$$ \newcommand\bm[1]{\boldsymbol{#1}} \renewcommand\limsup{\varlimsup} \renewcommand\liminf{\varliminf} $$

次の等式を証明せよ. \begin{equation*} \begin{split} &\sinh{(x+y)} = \sinh{x}\cosh{y}+\cosh{x}\sinh{y}, \\ &\cosh{(x+y)} = \cosh{x}\cosh{y}+\sinh{x}\sinh{y}, \\ &\tanh{(x+y)} = \frac{\tanh{x}+\tanh{y}}{1+\tanh{x}\tanh{y}}. \end{split} \end{equation*}

解答例 1

$\sinh{x} = (e^{x} - e^{-x})/2$, $\cosh{x} = (e^{x} + e^{-x})/2$ より, \begin{align*} &\sinh{x}\cosh{y}+\cosh{x}\sinh{y} \\ &= \frac{1}{4}\bigl( (e^{x}-e^{-x})(e^{y}+e^{-y}) + (e^{x}+e^{-x})(e^{y}-e^{-y}) \bigr) \\ &= \frac{1}{4}\bigl( (e^{x+y}+e^{x-y}-e^{-x+y}-e^{-x-y}) \\ &\qquad + (e^{x+y}-e^{x-y}+e^{-x+y}-e^{-x-y}) \bigr) \\ &= \frac{1}{2}(e^{x+y}-e^{-x-y}) = \sinh{(x+y)}. \end{align*} 同様に計算すると, \begin{align*} &\cosh{x}\cosh{y}+\sinh{x}\sinh{y} \\ &= \frac{1}{4}\bigl( (e^{x}+e^{-x})(e^{y}+e^{-y}) + (e^{x}-e^{-x})(e^{y}-e^{-y}) \bigr) \\ &= \frac{1}{4}\bigl( (e^{x+y}+e^{x-y}+e^{-x+y}+e^{-x-y}) \\ &\qquad + (e^{x+y}-e^{x-y}-e^{-x+y}+e^{-x-y}) \bigr) \\ &= \frac{1}{2}(e^{x+y}+e^{-x-y}) = \cosh{(x+y)}. \end{align*} さらに, \begin{align*} \tanh{(x+y)} &= \frac{\sinh{x}}{\cosh{x}} \\ &= \frac{\sinh{x}\cosh{y}+\cosh{x}\sinh{y}}{\cosh{x}\cosh{y}+\sinh{x}\sinh{y}} \\ &= \frac{\tanh{x}+\tanh{y}}{1+\tanh{x}\tanh{y}}. \end{align*} ここで, 最後の等式において, 分母・分子をそれぞれ $\cosh{x}\cosh{y}$ で割った.

最終更新日:2011年11月02日

©2003-2011 よしいず