$X$, $Y$ を集合, $f:X\rightarrow Y$ を写像, $(A_{\lambda}\mid\lambda\in\Lambda)$ を $X$ の部分集合系とする. このとき, $$ f\left( \bigcup_{\lambda\in\Lambda}A_{\lambda} \right) = \bigcup_{\lambda\in\Lambda}f(A_{\lambda}) $$ が成り立つことを証明せよ.
解答例 1
任意の $\lambda\in\Lambda$ に対して, $$ A_{\lambda}\subseteq\bigcup_{\lambda\in\Lambda}A_{\lambda} $$ であるから, $$ f(A_{\lambda})\subseteq f\left( \bigcup_{\lambda\in\Lambda}A_{\lambda} \right). $$ したがって, $$ \bigcup_{\lambda\in\Lambda}f(A_{\lambda}) \subseteq f\left( \bigcup_{\lambda\in\Lambda}A_{\lambda} \right). $$
逆に, $\displaystyle y\in f\left( \bigcup_{\lambda\in\Lambda}A_{\lambda} \right)$ とすると, ある $\displaystyle a\in\bigcup_{\lambda\in\Lambda}A_{\lambda}$ が存在して, $y=f(a)$. このとき, ある $\lambda_0\in\Lambda$ が存在して, $a\in A_{\lambda_0}$. ゆえに, $$ y=f(a)\in f(A_{\lambda_0}) \subseteq \bigcup_{\lambda\in\Lambda}f(A_{\lambda}). $$ よって, 逆の包含関係もいえる.
最終更新日:2011年11月02日